Main function of the TimeCycle package used for detecting rhythmic signals in time-series gene expression sets.
For additional help with parameter selection, see TimeCycle's vignette:
vignette("TimeCycle")
.
TimeCycle( data, repLabel, resamplings = 10000, minLag = 2, maxLag = 5, period = 24, cores = parallel::detectCores() - 2, laplacian = T, linearTrend = F )
data | a |
---|---|
repLabel | a |
resamplings | a |
minLag | a |
maxLag | a |
period | a |
cores | a |
laplacian | a |
linearTrend | a |
a tidy data.frame
of processed results for each gene:
sampleName | perScore | pVals | pVals.adj | Period.in.Hours | Amp | Phase.In.Hours |
the gene name | the median persistence score across all lags (min to max) | raw empirical p-value | FDR adjusted p-value | period (h) | amplitude | phase (h) |
The TimeCycle Manuscript is available from Bioinformatics at https://doi.org/10.1093/bioinformatics/btab476
Wadhwa RR, Williamson DFK, Dhawan A, Scott JG. (2018). "TDAstats: R pipeline for computing persistent homology in topological data analysis." Journal of Open Source Software. 2018; 3(28): 860. doi:[10.21105/joss.00860]
Bauer U. (2019). "Ripser: Efficient computation of Vietoris-Rips persistence barcodes." arXiv: 1908.02518.
# use built in zhang2014 data set sampled every # 2 hours for 48 hours (i.e. 24 time points with 1 replicate each). # Search for genes with period of 24 hours. #set seed for reproducibility with random variables in example usage #> set.seed(1234) #> TimeCycleResults <- TimeCycle(data = zhang2014, #> repLabel = rep(1,24), #> period = 24) # Check number of genes with FDR < 0.05 and period between 22 to 26 hours. #> library(tidyverse) #> TimeCycleResults %>% #> filter(22 < Period.in.Hours & Period.in.Hours < 26) %>% #> filter(pVals.adj < 0.05) %>% #> glimpse()